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Abstract 

 

Moment of inertia of cross-sectional properties of complex nature has been difficult to obtain 

analytically. Analysis computer programs, and calculus, have been applied in other to overcome 

the problems encountered in the calculation of this property efficiently and accurately. From 

literatures, the nine-noded Lagrangian quadratic element for an asymmetric section have been 

applied in creating shape functions at each nodes in two dimensions and have been incorporated 

into the double integration of the equations relating the shape functions obtained and the 

Jacobian determinant with respect to the reference z-coordinates numerically and utilized in 

deriving the moment of inertia of a solid cross-section. In this paper, this equation has been 

applied to derive the moment of inertia for a four-noded and nine-noded symmetrical rectangular 

beam cross section numerically. Numerically, there was no difference between the moment of 

inertia calculated from the four-noded and nine-noded rectangular elements. The results were not 

different from the analytical value obtained from literatures which showed a very good 

agreement.  

 

Keywords: Rectangular element, Lagrange function, shape function, Jacobian matrix, Moment of 

inertia 

 

Introduction  

Reference cross sections, according to Pilkey (2002), can be utilized to ease computations when 

dealing with complex form cross sections. A transformation maps the geometry of a reference 

cross section with its simple geometry to the geometry of the real cross section. This 

transformation describes the coordinates of each real domain point (y, z) in terms of the 

coordinates of the associated reference domain point (η, ζ). Isoparametric elements have 

geometric transformation equations and function interpolation formulas that have the same form. 

In terms of shape functions, the geometrical transformation for the nine-noded Lagrangian 

element is defined as:  
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y(η, ζ ) = N(η, ζ )y  

             z(η, ζ ) = N(η, ζ )z  

Where:  

N is a row vector of length 9 whose entries are the shape functions  

y, z are the y, z coordinates of the nodes of the real element and 

η, ζ are the η, ζ coordinates of the nodes of the reference element. 

Assume that at any location within the element, the basic variable is a function of values at the 

element's nodal points. Shape function refers to the function that connects the field variable at 

any location within the element to the field variables of nodal points. This is also known as the 

interpolation function or the approximation function. (Bharikatti, 2005). 

There are certain fundamental unknowns in engineering problems. If they are discovered, the 

overall behavior of the structure can be anticipated. These unknowns are endless in a continuum. 

By splitting the solution region into small portions called elements and describing the unknown 

field variables in terms of presumed approximation functions (Interpolating functions/Shape 

functions) within each element, the finite element approach reduces such unknowns to a finite 

number. The approximation functions are described in terms of field variables of nodes or nodal 

points. Thus, the unknowns in finite element analysis are the field variables of the nodal points. 

Once these have been determined, the field variables at any time can be determined using 

interpolation functions/Shape functions (Reddaiah, 2017). 

 When working with elements of complex shapes, reference elements can be utilized to ease 

calculations. A transformation maps the geometry of a reference element with its simple 

geometry to the geometry of the real element. The coordinates of each point in the real domain 

are defined in terms of the coordinates of the corresponding point in the reference domain via 

this transformation (Pilkey, 2002). 
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Figure 1. The transformed nine noded rectangular section. 

 

 

Figure 2. The transformed four noded rectangular section. 

Reddaiah (2017) used Lagrange Functions in Natural Coordinate System to generate Shape 

Functions for 9-Noded Rectangular Elements and proved two shape function verification 

requirements. The first verification condition is that the sum of all the shape functions equals 

one, and the second is that each shape function has a value of one at its own node and zero at the 

other nodes. 
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Sangare et al. (2009) conducted a comparative study of the hierarchical p-element shape 

functions: noninterference condition formulation, Lagrange formulation, and Legendre 

formulation for both quadrilateral and triangular elements using a set of linear elastic two-

dimensional numerical applications. For preliminary comparisons, the meshes were primarily 

composed of 9 node quadrilateral and 7 node triangular elements. These analyses show that, 

while the Legendre type formulation has a superior condition number of stiffness matrix, it is not 

the optimum p-element formulation for deformed meshes or for convergence stability of 

computed stress values. 

EUREQA was utilized to find analytical models for adjusting an existing equation used to 

calculate the improvement of the moment of inertia on a ribbed portion in reference to the same 

item. The analytical and numerical answers obtained using the classical Orlov's equation differ 

slightly. The goal of the project was to create an analytical model based on Orlov's to increase 

the accuracy of the results. (Hugo and Jerzy, 2020). 

Shear stress-related cross-sectional characteristics have historically been difficult to acquire 

analytically. The torsional constant, shear deformation coefficients, warping constant, and shear 

stresses are all examples of these properties. Pilkey, (2002) outlined the fundamental concepts of 

finite element analysis utilized in the analysis of asymmetric cross-sections and showed how 

warping-independent section parameters, such as areas or moments of inertia, are determined 

through integration. The finite element method was described in terms of a nine-node Lagrangian 

element in two dimensions. 

Patela et al. (2005) developed an explicit equation for the effective moment of inertia taking 

cracking into account for uniformly distributed loaded reinforced concrete (RC) beams in order 

to estimate short-term deflection at service load. The trained neural network produced the 

explicit expression. Three major structural parameters were chosen as neural network inputs. 

Three major structural parameters were chosen as neural network inputs. The neural network 

training data sets were prepared using the finite element software ABAQUS. A sensitivity 

analysis was undertaken, and the results show that the effective moment of inertia is highly 

dependent on the input parameters. 

Various processes and empirical formulas were used to undertake manual analysis and design 

difficulties.Many times, redesigning the section is required to satisfy the codal provisions, which 

takes extra time and energy. A programming language was applied to calculate the Moment of 

Inertia of various geometrical shapes such as a circle, rectangle, triangle, and the unsymmetrical 

I section, channel section, T section, and L section using the basic concept of C programming 

and condition of If statements. This method's result was compared to the appropriate analytical 

procedure. Rani,(2021) 

Ochiai,(2019) established boundary integral equations to calculate the moment of inertia of a 3D 

nonhomogeneous material. A boundary element approach formulization was used, and a strategy 
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for direct numerical integration of the three-dimensional domain utilizing a three-dimensional 

interpolation method without domain division was presented. To test the numerical integral's 

accuracy, the moment of inertia of the spherical domain of radius R was measured and compared 

to the Monte Carlo approach. 

The mass moment of inertia (MMI) of a wooden beam with circular, circular hollow, 

rectangular, and rectangular hollow cross sections was computed and plotted using MAPLE to 

determine whether there is a direct or indirect relationship between the MMI and AMI. Aside 

from the fact that the results were consistent with the literature, the MMI of all the beams studied 

was more than their AMI. The AMI for the beams along another axis was also greater than the 

solid's moment of inertia about the axis through the solid's center of mass, given the shortest 

distance between the axes. Agarana et al. (2021). 

As an alternative to the parallel axis theorem, calculus and software applications, this paper aims 

at deriving the moment of inertia for a symmetric rectangular beam cross section by applying the 

double integral equation of Pilkey, (2002) which related shape functions, N, with the z-

coordinates of each nodal points and the Jacobean determinant, |J| with respect to the the non- 

dimensional axis ξ and η, from first principles numerically. 

Methodology  

 

THE SHAPE FUNCTION FOR THE 9-NODED QUADRATIC RECTANGULAR SECTION 

 

In terms of the shape function, Chandrupatla and Belegundu, (2002) defined the geometrical 

transformation for the nine-node Lagrangian element as: 

 

N1 =  
ɳξ(1−ξ)(1−ɳ)

4
 

N2 =   
ɳξ(1+ξ)(1−ɳ)

4
 

 

N3 =   
ɳξ(1+ξ)(1+ɳ)

4
 

 

N4 =   
−ɳξ(1−ξ)(1+ɳ)

4
 

 

N5 = 
−ɳ(1−ɳ)(1−ξ)(1+ξ) 

2
 

N6 =    
ξ(1−ɳ)(1+ɳ)(1+ξ) 

2
  

 

N7 =   
ɳ(1+ɳ)(1−ξ)(1+ξ) 

2
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N8 =  
−ξ(1−ɳ)(1+ɳ)(1−ξ) 

2
 

N9 = (1- ξ)2(1- ɳ)2  (1) 

 

TRANSFORMATIONS OF DERIVATIVES AND INTEGRALS 

 

The Jacobian matrix relates partial derivatives of a function f((ɳ, ξ) with respect to ɳ and ξ  in the 

reference domain , to its derivatives with respect to the y and z axis in the real domain.  

For a nine-noded quadratic rectangle lagrangian element, the Jacobian matrix, J is given by 

Pilky, 2002: 

 

[

∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N5

∂ξ

∂N6

∂ξ

∂N7

∂ξ

∂N8

∂ξ

∂N9

∂ξ

∂N1

∂ɳ

∂N2

∂ɳ

∂N3

∂ɳ

∂N4

∂ɳ

∂N5

∂ɳ

∂N6

∂ɳ

∂N7

∂ɳ

∂N8

∂ɳ

∂N9

∂ɳ

]

[
 
 
 
 
 
 
 
 
y1 z1

y2 z2

y3 z3

y4 z4

y5 z5

y6 z6

y7 z7

y8 z8

y9 z9]
 
 
 
 
 
 
 
 

  (2) 

 

Differentiating equation 1,with respect to  ɳ ,we obtain the partial derivatives of the shape 

functions as:  

   
∂N1

∂η
 = 

ξ(1−2ɳ)(1−ξ) 

4
 

           
∂N2

∂η
 = 

−(1−2ɳ)(1−ξ) 

2
   

           
∂N3

∂η
 = 

− ξ(1−2ɳ)(1+ξ) 

4
 

           
∂N4

∂η
 = 4ɳξ(1- ξ) 

          
∂N5

∂η
 =  - 8ɳ(1- ξ2) 
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∂N6

∂η
 = - 4ɳξ(1+ ξ) 

∂N7

∂η
 = -  ξ(1+2ɳ)(1-ξ )  

∂N8

∂η
 = 2(1+2ɳ)(1-ξ2 ) 

          
∂N9

∂η
 = ξ(1+2ɳ)(1+ξ )  (3) 

  Similarly,  

∂N1

∂ξ
 = 

ɳ(1−ɳ)(1−2ξ) 

4
 

           
∂N2

∂ξ
 = ɳξ(1 − ɳ)       

∂N3

∂ξ
 =  

−ɳ(1−ɳ)(1+2ξ) 

4
 

∂N4

∂ξ
 = 

−(1−ɳ2)(1−2ξ)

2
 

          
∂N5

∂ξ
 = −2ξ(1 − ɳ2)     

           
∂N6

∂ξ
 = 

(1−ɳ2)(1+2ξ)

2
 

           
∂N7

∂ξ
 =

−ɳ(1+ɳ)(1−2ξ) 

4
 

∂N8

∂ξ
 = −ɳξ(1 + ɳ)        
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∂N9

∂ξ
 = 

ɳ(1+ɳ)(1+2ξ) 

4
                (4) 

 

 

The determinant of the jacobian, J, becomes 

 

              | J | = J11 J22 − J12 J21    (5) 

 

The determinant | J | can be expressed in terms of the shape function derivatives and the element 

nodal coordinate vectors as: Pilky, (2002). 

         | J | = 
∂N 

∂η
y

∂N 

∂ξ
z - 

∂N

∂η
z
∂N

∂ξ
y   (6) 

  

From figure 1, the y-coordinates are, 

 

y1 = 
−b

2
   

y2= 
−b

2
 

y3=
−b

2
 

y4= 0 

y5= 0 

y6= 0 

y7= 
b

2
 

y8= 
b

2
 

y9= 
b

2
     (7) 

    

and the z-coordinates are, 

z1 = 
−h

2
 

z2= 0 

z3=
h

2
 

z4= 
−h

2
 

z5=0 

z6=
h

2
 

z7=
−h

2
 

z8= 0 

z9= 
h

2
     (8) 
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Substituting equation 3 and equation 4 into equation 6, and putting ξ=0, gives the values for J11, 

J12, J21, and J22: 

 

J11 = 
∂N 

∂η
y =  

 [
ξ(1−2η)(1−ξ)

4
x

−b

   2
 + [

−2(1−2η)(1−ξ2)

4
x

−b

   2
] 

+[
−ξ(1−2η)(1+ξ)

4
x

−b

   2
]+

−4ηξ(1−ξ)x0

4
+[

−8η(1−ξ2)x0

4
]+[

−4ηξ(1+ξ)x0

4
]+[

−ξ(1+2η)(1−ξ)

4
x

  b

   2
]+[

2(1+2η)(1−ξ2)

4
x

  b

   2

]+ [
ξ(1+2η)(1−ξ2)

4
x0] 

But = ξ=0 

         J11= 
−2(1−2η)

4
x

−b

   2
]+ 

2(1+2η)

4
x

   b

   2
 

 =(
−2

4
 + 

4η

4
) x 

−b

2
 + (

2

4
 + 

4η

4
) x 

b

2
 

 =  
b

2
 - 

bη

2
 + 

b

4
 + 

bη

2
  

But = ξ=0 

        J11 = 
b

2
    (9) 

 

       J12 = 
∂N 

∂η
z  

  

J12 = [
ξ(1−2η)(1−ξ)

4
x

−h

   2
 + [

−2(1−2η)(1−ξ2)

4
x0] 

+[
−ξ(1−2η)(1+ξ)

4
x

  h

   2
]+

−4ηξ(1−ξ)

4
x

−h

   2
 

+[
−8η(1−ξ2)x0

4
]+[

−4ηξ(1+ξ)

4
x

  h

   2
] 

+[
−ξ(1+2η)(1−ξ)

4
x

 −h

   2
]+[

2(1+2η)(1−ξ2)

4
x0 

+ [
ξ(1+2η)(1−ξ2)

4
x0] 

  

But = ξ=0 

       J12 = 0    (10) 

       J21 = 
∂N 

∂ξ
y         

      =[
η(1−η)(1−2ξ)

4
x

−b

   2
+[

−4(1−η)

4
x

−b

   2
] 

     +[
−η(1−η)(1+2ζ)

4
x

−b

   2
]+ 

−2ξ(1−η2)x(1−2ξ)x0

4
+[

−8ξ(1−η2)x0

4
]+[

2(1−η2)x(1+2ξ)x0

4
]+[

−η(1+η)(1−2ξ)

4
x

  b

   2
] + 

[
−4ηζ(1+η)

4
x

  b

   2
] + [

η(1+η)(1+2ξ)

4
x

  b

   2
] 
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But = η=0 

J21= 0    (11)       

J22 = 
∂N 

∂ξ
z      

Similarly, 

J22  
−2(1−2ξ)

4
x

−h

   2
]+ 

2(1+2ξ)

4
x

   h

   2
 

=  (
−2

4
 + ξ) x 

−h

2
 + (

2

4
 + ξ) x 

h

2
 

=  
h

4
 - 

hξ

2
 + 

h

4
 + 

hξ

2
  

J22 = 
h

2
    (12) 

 

The Jacobian matrix becomes: 

 

J  =  [

b

2
0

0
h

2

]   (13)      

The Jacobian Determinant becomes:  

 

|J| = 
bh

4
    (14) 

   

 

MOMENT OF INERTIA OF THE NINE -NODED RECTANGULAR SECTION, IyR. 

 

The moment of inertia, IyR., can be solved using the following equations by (Pilkey, 2002): 

      IyR=∑ ∫ ∫ (Nze)
21

−1

1

−1

2

e=1
|Je|dη dξ      (15) 

 

IyR = 

∑ ∫ ∫

(

 
 
 
 
 
 

[N1   N2    N3    N4   N5     N6   N7    N8    N9   ]  

[
 
 
 
 
 
 
 
 
z1

z2

z3

z4

z5

z6

z7

z8

z9]
 
 
 
 
 
 
 
 

  

)

 
 
 
 
 
 

2

1

−1

1

−1

2

e=1

|J| dη dξ    (16) 

Substituting the shape functions and the nodal coordinates  into equation 15 gives the moment of 

inertia, as: 
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 IyR  = ∑ ∫ ∫  [(
4ηξ(1−η)(1−ξ)

4
x

h

2
) + (

−2η(1−η)(1−ξ2)x0

4

1

−1

1

−1

2

e=1

) + (
−ηξ(1−η)(1+ξ)

4
x

h

2
) +

(
−2ξ(1−η2)(1−ξ)

4
x

−h

2
) + (

−4(1−η2)(1−ξ2)x0

4
+ (

2ξ(1−η2)(1+ξ)

4
x

h

2
) + (

−ηξ(1+η)(1−ξ)

4
x

−h

2
) +

(
2η(1+η)(1−ξ2)x0

4
+ (

ηξ(1+η)(1+ξ)

4
x

h

2
) |JeR|dη dξ           

=∑ ∫ ∫

 

[(
−hηξ(1−ξ−η+ηξ)

8
) −

1

−1

1

−1

2

e=1

(
hηξ(1+ξ−η−ηξ)

8
) 

+(
hξ(1−η2−η−ηξ)

4
)+(

hξ(1+ξ−η2−η2ξ)

4
)+(

hηξ(1−ξ+η−ηξ)

8
)+(

hηξ(1+ξ+η+ηξ)

8
)]2 x bh

4
dɳdξ 

=∑ ∫ ∫  [(
hξ

2
)

1

−1

1

−1

2

e=1

]2 x bh

4
 dη dξ 

=∑ ∫ ∫  [(
h2ξ2

4
)

1

−1

1

−1

2

e=1

x
bh

4
 ]dη dξ 

= ∑ ∫ ∫  (
bh3ξ2

16
)

1

−1

1

−1

2

e=1

 dηdξ 

=∫  
1

−1
(
bh3ξ2

16
)
−1

1

 dη 

= ∫  (
bh3

16
x

1

3
)

1

−1

-(
bh3

16
x

−1

3
) dη 

= ∫  (
bh3

48
)

1

−1

+(
bh3

48
) dη 

= ∫  (
bh3

24
)

1

−1

 dη 

IyR=
bh3

12
    (17) 
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THE SHAPE FUNCTION FOR THE 4-NODED QUADRATIC RECTANGLE ELEMENT  

 

The shape function for a four noded rectangular elemrnt is given by: Bharikatti,(2005). 

 

N1 =  
(1−ξ)(1−ɳ)

4
 

N2 =  
(1−ξ)(1+ɳ)

4
 

 

N3 =  
(1+ξ)(1−ɳ)

4
 

N4 =  
(1+ξ)(1+ɳ)

4
    (18) 

 
Differentiating with respect to ɳ gives: 

   

             
∂N1

∂η
 = 

(−1+ξ) 

4
 

 
 ∂N2

∂η
 = 

(1−ξ) 

4
 

 

          
 ∂N3

∂η
 = 

(−1−ξ) 

4
 

 
 ∂N4

∂η
 = 

(1+ξ) 

4
    (19) 

 
Similarly, 

 
∂N1

∂ξ
 =  

(−1+ɳ) 

4
 

∂N2

∂ξ
 =  

(−1−ɳ) 

4
 

∂N3

∂ξ
 =  

(1−ɳ) 

4
 

∂N4

∂ξ
 =  

(1+ɳ) 

4
   (20) 
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From the geometry in figure 2, the coordinates of the four noded points are given as: 

y1= 
−b

2
 

y2= 
−b

2
 

y3= 
b

2
 

y4= 
b

2
 

z1= 
−h

2
 

z2= 
h

2
 

z3= 
−h

2
 

z4= 
h

2
    (21) 

 

Similarly, substituting equation 19 and equation 20 into equation 6, and putting ξ=0, gives the 

values for J11, J12, J21, and J22 for the 4 noded section: 

 

J11=
∂N 

∂η
y = [

(−1+ξ) 

4
.
−b

2
] +[

(1−ξ) 

4
.
−b

2
]+[

(−1−ξ) 

4
.
b

2
]+[ 

(1+ξ) 

4
.
b

2
] 

J11=0     (22) 

J12 = 
∂N 

∂η
z = [

(−1+ξ) 

4
.
−h

2
+[

(1−ξ) 

4
.
h

2
]+     [

(−1−ξ) 

4
.
−h

2
]+[ 

(1+ξ) 

4
.
h

2
] 

J12=
h

2
     (23) 

J21=
∂N 

∂ξ
y = [

(−1+η) 

4
.
−b

2
+[

(−1−η) 

4
.
−b

2
]+ [

(1−η) 

4
.
b

2
]+[ 

(1+η) 

4
.
b

2
] 

J21=
b

2
     (24) 

J22=
∂N 

∂ξ
𝑧=[ 

(−1+η) 

4
.
−h

2
+[

(−1−η) 

4
.
h

2
]+[

(1−η) 

4
.
−h

2
]+[ 

(1+η) 

4
.
h

2
] 
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J22 = 0     (25) 

The Jacobian matrix becomes: 

 

J  =  [
0

b

2
h

2
0
]    (26) 

The Jacobian Determinant becomes:  

 

|J| = 
bh

4
    (27) 

MOMENT OF INERTIA OF THE FOUR -NODED RECTANGULAR SECTION,  

 

The moment of inertia, , can be solved using equation 15. For the 4 noded section, the moment of 

inertia becomes: 

∑ ∫ ∫ ({𝑁1 𝑁2 𝑁3 𝑁4} {

𝑧1

𝑧2

𝑧3

𝑧4

})

2

1

−1

1

−1

2

e=1

|J|dηdξ    (28) 

 

Substituting equation 18 and equation 21 into equation 28 gives: 

=∑ ∫ ∫ (
(hɳ)

2
)
21

−1

1

−1

2

e=1
dηdξ   

=∫  
1

−1
(
bh3ɳ2

16
) |−1

1  dξ 

= ∫  (
bh3

16
x

1

3
)

1

−1

-(
bh3

16
x

−1

3
) dξ 

= ∫  (
bh3

48
)

1

−1

+(
bh3

48
) dξ 
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= ∫  (
bh3

24
)

1

−1

 dξ 

IyR=
bh3

12
    (29) 

 

The analytical value of the moment of inertia of a rectangular section is given by Rhyder, (1982.) 

as:  

I = 
bh3

12
    (30) 

 

Discussion  

 

The moment of inertia for a rectangular section was calculated numerically for the nine noded 

lagrangian quadratic element and the four noded lagrangian quadratic element. The cross section 

was meshed into a four-noded and nine-noded element for a symmetrical rectangular solid cross 

section, and the equation of the moment of inertia of the rectangular sections were obtained by 

double integration of the equations relating shape functions obtained from literature, with the 

transformed coordinate points from the cross section, and the Jacobian determinant as obtained 

by Pilkey, (2002). 

It was discovered that the shape functions for the nodal points were related to the moment of 

inertia of the cross section, which was also confirmed by literature. The values of the moment of 

inertia are observed to be the same for both the 4 noded cross section and the 9 noded section, 

indicating that the number of nodal points had no effect on the moment of inertia. This is because 

the moment of inertia is a cross sectional property that does not vary regardless of the number of 

nodal points unless the sectional dimensions are changed. The moment of inertia calculated was 

with respect to the centroidal axis. The moment of inertia was the same for both the analytical 

solution obtained from literature and the numerical method.  

 

Conclusion and Recommendation  

 

The numerically determined moment of inertia equation of this work provides a valid solution 

for estimating the moment of inertia of rectangular cross-sections. 

In the case of a symmetric rectangular plain section, increasing the number of crossection node 

points from a four noded rectangular section to a nine noded rectangular section has no effect on 

the moment of inertia. 

This method is applicable to other complex symmetrical and asymmetrical shapes. More work 

may be done to investigate the effect of mesh size and number on the moment of inertia of 

rectangular beams using numerical methods for mesh sizes larger than nine nodal points. 
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